咨询热线
18566398802随着汽车工业发展、汽车保有量的增多,在给人们出行带来了方便的同时也产生了能耗、排放污染和安全三大问题。2009年中国汽车产销量已达1300万辆,跃居世界第一;汽车保有量已超过7000万辆,因此我国汽车工业的节能减排工作刻不容缓。
大量研究表明,汽车轻量化是汽车节能减排的重要手段。乘用车车重每减少10%,可节油6%~8%,降低排放4%
2009年的欧洲车身会议(Euro Car Body 2009)上报导一些典型车型变形铝合金用量达25~30kg,而变形铝合金板材的应用还有利于满足汽车安全法规的要求,采用铝合金发动机罩盖,就可以明显减少二次碰撞对行人的伤害,有利于满足碰撞对行人的保护法规的要求。目前我国汽车用铝合金板材研究还不够深入,为了推动汽车用铝合金板材的研发和深入研究,作者对铝合金汽车板及其应用的研究进展进行了综述。
板材的成形性是指在冲压过程中其承受形状变化的能力。成形性可以通过成形性试验进行评价。目前钢板的成形性已有大量试验结果
评价成形性的最常用的试验是单轴拉伸试验,为提高板材的成形性,希望板材具有较低的屈强比,较高的加工硬化速率和均匀伸长率;评价板材在各种应力状态下的成形性试验是测定成形极限曲线(FLC)。
铝合金板材在室温存放时不发生时效的特性称之为抗时效稳定性。因为时效会使合金在拉伸变形时出现屈服点伸长,即吕德丝(lüders)带,从而在冲压时造成表面变形不均和起皱,影响冲压件的外观;板材从生产出厂到零件冲压时往往需要运输和储存一些时间,通常要求板材在室温存放6个月而不发生时效。
汽车冲压件在冲压后经油漆烘烤处理时也会产生时效,从而使其屈服强度上升的特性称之为烘烤硬化性。高的烘烤硬化性将会赋予零件高的抗凹痕性。由于目前大部分汽车企业的油漆烘烤工艺是针对钢板设计的,而铝合金的烘烤硬化性和钢的明显不同,因此希望铝合金板的烘烤硬化性较好和钢板的油漆工艺兼容;材料的烘烤硬化性可按相关标准[3-4]进行评定。
板材和构件抵抗外力作用而不发生凹陷或永久变形的能力称为抗凹痕性。材料的抗凹痕性与其流变应力σf有关,也与材料厚度t有关
汽车外覆盖件在冲压翻边时,板材抵抗开裂的特性称为翻边延性。因此要求铝合金板材应具有良好的翻边延性,以保证在翻边时不发生开裂。板材的翻边延性和板材的总伸长率有关,也与材料的内部组织有关。翻边延性可用冷弯试验来检测,但通常的冷弯并未考虑到应变速率敏感性,而冲压翻边时变形较快,应变速率较大,从而对翻边延性有更高的要求。
铝合金板材和钢板不同,其晶粒度远大于钢的,在较粗的晶粒下,如果晶粒大小不均则会导致冲压件的表面沿轧制方向出现像绳索圈(Roping)样的变形不均匀,这种表面缺陷又称罗平线(Roping line)
钢铁材料在油漆之前,其表面要进行酸洗磷化处理,以改善冲压件表面与油漆的结合力,提高其耐蚀性;由于铝合金表面会有一种结合紧密的氧化膜,油漆前的表面处理方法就和钢铁材料不同,不能用一般的酸性磷化方法,而是采用铬化处理,考虑到六价铬对人体的毒性,近年来开发了无铬式或低铬处理技术,其中典型处理方法是Arodine方法
显然,上述7种性能既互相关联,又相互矛盾,如何将上述相关性能得到合理匹配,满足汽车冲压件的性能要求是铝合金汽车板研发的主要目标。
目前铝合金汽车板主要有两个系列,5000系和6000系列,其典型牌号的合金成分列于表1。6000系合金分含铜(如6111)和基本不含铜(如6016,6022,6181)两类,前者具有高的烘烤硬化性,但对对丝状腐蚀比较敏感;后者具有高的烘烤硬化性、良好的成形性、良好的耐腐蚀性。5000系合金中分高含量镁(如5182)的合金板,它具有较高强度、良好的成形性,但对晶间腐蚀较敏感;中含量镁的合金板(如5754)具有良好的晶间腐蚀性能和良好的成形性;低含量镁的合金板(如5052)的主要是强度较低。5000系和6000系的典型牌号的合金板的主要性能列于表2,其相应的成形性参量列于表3[7,9].表中 r值为金属板塑性应变各向异性值;n值为金属板拉伸应变硬化指数,基本成分设计概念和性能特点列于表2.
表1 6000系和5000系典型铝合金汽车板材的主要成分(质量分数)
Tab.1 the chemical composition of typical 5××× and 6××× series Al alloy sheets %
合金牌号 | 合金元素 | ||||
Si | Fe | Cu | Mn | Mg | |
6016 | 1.0~1.5 | <0.50 | <0.20 | <0.20 | 0.25~0.60 |
6022 | 0.8~1.5 | 0.05~0.20 | 0.01~0.10 | 0.02~0.10 | 0.45~0.70 |
6111 | 0.7~1.1 | <0.40 | 0.50~0.90 | 0.15~0.45 | 0.50~1.0 |
5022 | <0.25 | <0.40 | 0.20~0.50 | <0.10 | 3.50~4.9 |
5023 | <0.25 | <0.40 | 0.20~0.50 | <0.10 | 5.0~6.2 |
5182 | <0.20 | <0.35 | <0.10 | 0.20~0.50 | 4.5~5.0 |
表2 5000系和6000系典型铝合金汽车板材的主要性能
Tab.2 The main properties of typical 5××× and 6××× series Al alloy sheets
合金牌号 | 状态 | E/MPa | 泊松比 | 密度, kg/m3 | 备注 | |||
屈服强度/MPa | 抗拉强度/MPa | 伸长率/% | ||||||
6111 | T4Pd | 69000 | 0.3 | 2.89×10-3 | 146.0 | 290.0 | 25.0 | 纵向 |
6022 | T4Pd | 69000 | 0.3 | 2.86×10-3 | 122.0 | 238.0 | 30.0 | 纵向 |
5182 | O | 69000 | 0.3 | 2.84×10-3 | 123.0 | 276.0 | 25.6 | 纵向 |
5023 | O | 69000 | 0.3 | 2.85×10-3 | 124.0 | 280.0 | 32.0 | 纵向 |
表3 5000系和6000系典型铝合金汽车板材的成形性
Tab.3 The formation properties of typical 5××× and 6××× series Al alloy sheets
合金牌号 | 状态 | 板厚,/mm | 成形性 | 冷弯垂直于轧向 | ||||
均匀延伸率,% | n值(变形量6%~12%) | K值(变形量6%~12%) | r值(变形量6%~12%) | FLD0 ,% | d=0,180°(试样宽度70mm) | |||
6111 | T4Pd | 0.9 | 18.0 | 0.23 | 540.0 | 0.65 | 22.8 | 不裂 |
6022 | T4Pd | 0.9 | 19.0 | 0.25 | 525.0 | 0.66 | 23.2 | 不裂 |
5182 | O | 0.9 | 21.0 | 0.32 | 514.0 | 0.82 | 22.2 | 不裂 |
5023 | O | 0.9 | 22.0 | 0.31 | 520.0 | 0.85 | 26.5 | 不裂 |
铝合金汽车板在拉伸时的均匀伸长率和总伸长率均低于软钢的,尤其是均匀伸长率和缩颈后的伸长率均远低于软钢的;因此,其深拉延、三轴应变及延展成形性均低于软钢。由于铝合金板材的初始加工硬化性能高于软钢的,因此其冷弯时的回弹也较大。一些牌号铝合金在不同的弯曲半径下其回弹角较软钢的大2~3倍,在设计铝合金冲压模具时必须充分考虑这一些特点。
5000系和6000系及软钢的碗状试样冲压成形时的开裂/起皱的极限高度与压边力的关系不太一样,在低压边力下,三种材料起皱的极限高度没什么区别;但在高压边力时,由于铝合金产生开裂而不能使成形高度进一步提高。因此,在模具设计时,对于铝合金板材冲压成
形时,应在较低的压边力下进行。
5000系变形铝合金汽车板材主要是以镁原子的固溶强化、细晶强化以及少量铜原子固溶和析出强化来强化的,该系合金具有良好成形性。室温放置时,易出现屈服点延长(或lüders伸长),冲压成形后表面易起皱,影响产品外观质量。铁元素的增加会明显恶化其延展性和冷弯性能;由于无烘烤硬化性,油漆烘烤后会易发生软化,从而影响零件的抗凹陷性。
6000系变形铝合金汽车板材以硅,镁作为主要合金元素(在6111合金还加入铜作为合金元素),这类合金是靠硅,镁在固溶时效析出强化作为主要强化手段,是可热处理强化的铝合金板,该类铝合金板材在预处理状态下具有良好的成形性,无屈服点伸长,适合于汽车外板,并具烘烤硬化性,在油漆烘烤后具有高的流变应力,零件具有高的抗凹陷性;但发生时效后会导致翻边延性下降和成形性恶化。
铝合金板材的制造工艺已有一些专利,如“冷轧耐蚀铝合金板材(WO 95/31580和US.Patent6.129792)”、“铝合金及制造铝合金板的方法(WO 96/03531)”、“可热处理强化的铝合金板的制造工艺 (WO 00/03052)”、“冲压铝合金产品的热处理(WO 00/70115)”、“具有良好弯曲性能的铝合金板材的制造方法(WO 02/090609)”等,这些专利针对不同成分铝合金板材的性能改善提出了相应的工艺方法;但所述的指标与汽车变形铝合金板材的综合性能要求亦还有一定差异。“烘烤硬化优异的Al-Mg-Si系铝合金板的制造方法(200480042140.X)”
表4不同处理工艺6016铝合金板材的力学性能
Tab.4 The mechanical properties of various treatment states
编号 | 状态 | 板厚mm | 取 样方向 ° | r值(变形量8%) | 屈服强度/MPa | 抗拉强度/MPa | 总伸长率% | 均匀伸长率% | n值(变形量0.5%~14%) |
1 | T4Pd | 0.9 | 0 | 0.727 | 142.0 | 244.0 | 25.0 | 18 | 0.220 |
2 | T4Pd | 0.9 | 45 | 0.802 | 138.0 | 240.0 | 27.0 | 18 | 0.212 |
3 | T4Pd | 0.9 | 90 | 0.506 | 130.0 | 230.0 | 24.6 | 14 | 0.231 |
4 | 冷轧 | 0.9 | 0 | 0.495 | 208.2 | 224.4 | 6.9 | 6.5 | 0.142 |
5 | 冷轧 | 0.9 | 45 | 1.036 | 200.4 | 219.1 | 5.9 | 5.6 | 0.176 |
6 | 冷轧 | 0.9 | 90 | 0.850 | 214.0 | 233.2 | 6.0 | 5.8 | 0.180 |
变形铝合金板材的自然时效特性是板材应用中的重要特性,由于时效会使拉伸时出现屈服点伸长,即lüders带,导致板材冲压后的零件表面会出现起皱等表面缺陷,影响汽车外覆盖件的质量,因此希望铝合金板材具有抗时效稳定性。
表5 自然时效对6022变形铝合金板材力学性能的影响
Tab.5 The influence of nature age on mechanical properties of 6022 alloy
自然时效时间/d | 力学性能 | |||
屈服强度/MPa | 抗拉强度/MPa | 伸长率/% | ||
0 | 纵向 | 125 | 238 | 30 |
横向 | 128 | 245 | 29 | |
7 | 纵向 | 130 | 246 | 30 |
横向 | 135 | 253 | 29 | |
90 | 纵向 | 142 | 260 | 30 |
横向 | 146 | 266 | 29 | |
180 | 纵向 | 145 | 261 | 30 |
横向 | 150 | 267 | 29 | |
270 | 纵向 | 146 | 262 | 30 |
横向 | 150 | 267 | 29 | |
360 | 纵向 | 146 | 261 | 30 |
横向 | 150 | 267 | 29 |
由表可以看出:放置7—90d后,板材的屈服强度和抗拉强度明显上升,而在90d 之后,其屈服强度和抗拉强度几乎没有变化,放置360d的时间之内,板材的伸长率基本没有变化。
自然时效对铝合金汽车覆盖件内板冲压时达到成形极限的高度时的压边力(BHF)完全没有影响。但对翻边成形性有明显影响,从预处理后到90d之内的自然时效,随时间延长,纵向翻边延性仍在较好水平,尤其是横向翻边延性变得较差,但自然时效90d 后随时间延长,翻边延性不再发生变化。
烘烤硬化性通常是以单轴拉伸试样预应变2%,然后于170℃~180℃烘烤3min后用其屈服强度增量来衡量;而铝合金板材的烘烤硬化性和合金系列、预处理工艺以及烘烤工艺(温度和时间)有关。6022合金板材在合适的预处理后,当烘烤温度一定时,随烘烤时间的延长,则烘烤硬化量上升;如烘烤时间一定(30min),则100℃以下烘烤对屈服强度影响不大,但在高于150℃时,则屈服强度迅速上升
对于6022和6016铝合金而言,晶粒大小对其力学性能有明显影响,并影响其预处理效果,在其它条件相同的情况下,细晶粒(直径50~70 )合金将具有良好的综合力学性能,预处理后,可望具有较好的成形性。第二相的大小和分布将明显影响翻边延性(即Heming性能),当具有细小、均匀分布的含镁、硅化合物时,板材具有良好的翻边延性;如果含镁、硅化合物粗大且呈尖角或立方形形状,合金板在冲压翻边时很难避免开裂。中国汽车工程研究院近期关于不同晶粒尺寸和不同第二相大小的6016的板材力学性能试验结果列于表5。可以看出:晶粒细化和第二相细化可以明显改善板材力学性能,即强度提高,延性改善。
表5 不同晶粒尺寸和不同尺寸第二相的铝合金板材的力学性能对比
Tab.5 the mechanical properties comparison of alloys for various crystals sizes and second phase
合金牌号 | 晶粒大小/ | 第二相形状 第二相尺寸 | 力学性能 | ||
屈服强度/MPa | 抗拉强度/MPa | 伸长率/% | |||
6016 | 108.0 | 杆状, 长12.5×5 | 128.7 | 248.0 | 24.0 |
6016 | 58.0 | 杆状, 长6×2.3 | 155.5 | 260.7 | 27.0 |
汽车用铝合金板材,尤其是汽车用铝合金外板是铝合金板材生产中的顶级产品,在其研发中应重点解决的是其抗时效稳定性、成形性、烘烤硬化性、翻边延性、油漆光鲜均匀性、抗凹性、表面处理技术等这些既相互联系又相互矛盾性能的合理匹配和统一,同时满足铝合金汽车板的力学性能、工艺性能以及零部件的功能要求。其具体研发过程:通过合金成分设计软件,完成汽车外覆盖件用铝合金板合金系列的选择和确定,以首先满足板材的成形性为依据,确定铁、锰、镁、硅、钛和锌等合金元素 含量对板材不同性能的影响,以达到最高的性价比及较好的性能匹配。为此,应特别注意以下的生产关键工艺。
(1)热轧板组织的均匀化及细化处理技术(均匀化加热工艺、保温时间、冷却速率的控制技术、始轧温度及压下量、终轧温度及压下量),重点解决晶粒度、成形性和翻边延性的关系,达到强度和延性的合理匹配。
(2)冷轧工艺控制及优化,道次控制、轧制压下量的控制、轧辊表面处理和板材表面处理技术,达到板材合理的表面粗糙度,并为保证表面的涂漆质量做准备。
(3)通过预处理技术使板材达到高成形性和抗时效稳定性,包括板材固溶处理、淬火冷却方式及淬火速率控制技术、强化相形核过程的控制技术、预时效等达到成形性、抗时效稳定性和高烘烤硬化性的合理匹配和统一;
(4)板材晶粒度和第二相细化和均匀性的控制技术,达到第二相均匀分布,应呈细棒状,长宽比2~5,平均长度不超过10μm,平行于轧制方向的平均晶粒度不超过80μm,并达到均匀性,以保证翻边延性和拉延涂装后不出现Roping line。
(5)铝合金汽车板成形性和抗凹性的评估方法、冲压构件的抗凹性、刚度、行人保护等性能检测、评价方法及表征参量的开发研究。
国内外的研究表明:6000系可热处理铝合金是变形铝合金汽车外板的合适材料。美国铝业公司、加拿大铝业公司及神户钢铁公司都进行了6000系和5000系变形铝合金汽车板的生产和应用研究,并已批量生产和应用;6000系铝合金汽车板主要应用于汽车外覆盖件,如发动机罩盖,和钢制零件相比可减重50%,同时,铝合金零件的导热性好,可以有效保证发动机的散热,并且在满足汽车碰撞对行人的保护方面也发挥了重要作用。目前国际上采用较多的铝合金汽车板型号有:AA6016、AA6022 、AA6111 、AA6005 、AA6009和AA6010, AA5182 、AA5754、 AA5052等,如Audi A8 车采用6016合金板作车身板,Acura NSX车使用5052作为内部面板以及6000系作为外部面板,Jaguar XJ220车和GM EV1车都采用5754作为车身覆盖件材料。
国内近几年对变形铝合金汽车板进行了较多应用研究,作者在大量研究基础上,系统而全面地提出了前面所述的对铝合金汽车板的7点性能要求。从应用的角度确定了研发铝合金汽车板首先应瞄准解决成形性问题,再通过预处理工艺的大量试验,解决其7个方面性能的合理匹配和工艺方法,并认真研究了国外铝合金烘烤硬化和抗凹性的测试方法[16-19],初步成果也用于徐州财发集团开发的铝合金汽车板上,取得良好的效果。同时和西南铝合作,承担国家“863”项目,开发出相关产品,通过成形模拟,成功冲压出奇瑞新车型的铝合金发动机罩,为其实际应用打了基础。目前国内生产的标志307、206以及北京大切诺基、长安CVLL混动车等以及一些军车上都在应用铝合金作汽车外板。随着汽车轻量化技术的发展,一些相关法规的实施及出口产品要求,将会有更多车型应用铝合金板材。
影响铝合金汽车板大范围应用的一个主要因素是成本和价格;但是随着铝合金板材产量的增加以及板材制造成本的下降,铝合金板材冲压件的成本会大幅度下降,而铝合金轻量化的节能效果会更加显著。铝制汽车构件的成本构成和用量的关系研究表明,当一种车型的产量上升到一定辆时,铝合金材料和制造及装配成本将会大幅度下降。
铝合金汽车板的开发与生产应用已得到国家的重视和支持,国内相关单位的联合攻关已取得了一定的进展,但要解决汽车铝合金板材生产和应用中的诸多问题,形成我国的专有技术和创新成果,尚有大量的技术工作待深入进行;充分利用产、学、研用相结合的模式和优势,使我国汽车用铝合金板材的生产取得新的进展,达到国际先进水平。今后的主要研究方面是扩大铝合金汽车板在汽车中的应用,除了研制和生产性能良好的铝合金板材外,还应该加强应用研究,包括冲压成型,连接技术,铝合金零件性能的检测方法和检测技术等。